Stellar Gyro

NSGY-001

Functional Characteristics
- **Rate estimation accuracy** (3σ) ≤ 0.20 degrees/s (boresight) ≤ 0.05 degrees/s (cross-boresight)
- **Maximum slew rate** ≥ 1.00 degrees/s
- **Detection capability** $M_v \geq 5.0$
- **Maximum number of features tracked** 15
- **Standard update rate** > 1 Hz
- **Sky coverage** > 99%

Physical Characteristics
- **Dimensions** 37.0 mm x 35.5 mm x 49.0 mm
- **Mass** < 100 g

Environmental Characteristics
- **Thermal (operational)** -25 °C to +50 °C
- **Vibration (qualification)** 14 g$_{max}$ (random)

Interfaces
- **Power supply** 5 VDC
- **Power Consumption** < 200 mW (average)
- **Communication** SPI
- **Connector** nano-D (P15)
- **Mechanical** Front: 3 x M3 (w/ alignment slots) Top: 2 x M3 (w/ alignment slots)

Configuration Management: Specifications are subject to change. Please refer to latest version.
The NewSpace stellar gyroscope uses a COTS sensor and optics resulting in a very low-cost attitude determination system that maintains accuracy during the eclipse phase. It can achieve this by using algorithms that tolerate noise and does not require a star database. It is thus far more robust against radiation damage than a standard star mapper solution would be if based on the same components.

FEATURES
- Active pixel CMOS detector
- Small size and low mass
- No baffle required
- Low power
- Simple to interface
- Immune to Moon and Earth in FoV

APPLICATIONS
- High performance 3-axis rate sensor
- Full sky sensor for agile satellites

QUALIFICATION
The Stellar Gyro has passed through qualification testing and is due for first launch in 2019.

UTILITY
The NewSpace stellar gyroscope can be used to propagate a spacecraft’s attitude from a known initial condition, without drift, while sufficient stars are common across frames. The image-based rotation estimates can complement a set of MEMS rate gyroscopes to maintain a high accuracy attitude estimate at low angular rates (where MEMS gyroscope drift is most severe).